The Correspondence between Projective Codes and 2-weight Codes
نویسندگان
چکیده
We show how to get a 1-1 correspondence between projective linear codes and 2-weight linear codes. A generalization of the construction gives rise to several new ternary linear codes of dimension six.
منابع مشابه
Codes and Projective Multisets
The paper gives a matrix-free presentation of the correspondence between full-length linear codes and projective multisets. It generalizes the BrouwerVan Eupen construction that transforms projective codes into two-weight codes. Short proofs of known theorems are obtained. A new notion of self-duality in coding theory is explored. 94B05, 94B27, 51E22.
متن کاملThe weight hierarchy of product codes
The weight of a code is the number of coordinate positions where no codeword is zero. The th minimum weight is the least weight of an -dimensional subcode. Wei and Yang gave a conjecture about the minimum weights for some product codes. In this correspondence, we will find a relation between product codes and the Segre embedding of a pair of projective systems, and we use this to prove the conj...
متن کاملSome notes on the characterization of two dimensional skew cyclic codes
A natural generalization of two dimensional cyclic code ($T{TDC}$) is two dimensional skew cyclic code. It is well-known that there is a correspondence between two dimensional skew cyclic codes and left ideals of the quotient ring $R_n:=F[x,y;rho,theta]/_l$. In this paper we characterize the left ideals of the ring $R_n$ with two methods and find the generator matrix for two dimensional s...
متن کاملThe Geometry of Homogeneous Two-Weight Codes
The results of [1, 2] on linear homogeneous two-weight codes over finite Frobenius rings are exended in two ways: It is shown that certain non-projective two-weight codes give rise to strongly regular graphs in the way described in [1, 2]. Secondly, these codes are used to define a dual two-weight code and strongly regular graph similar to the classical case of projective linear two-weight code...
متن کاملSmall weight codewords in the codes arising from Desarguesian projective planes
We study codewords of small weight in the codes arising from Desarguesian projective planes. We first of all improve the results of K. Chouinard on codewords of small weight in the codes arising from PG(2, p), p prime. Chouinard characterized all the codewords up to weight 2p in these codes. Using a particular basis for this code, described by Moorhouse, we characterize all the codewords of wei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Des. Codes Cryptography
دوره 11 شماره
صفحات -
تاریخ انتشار 1997